Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Radiat Res ; 201(4): 294-303, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588381

RESUMO

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.


Assuntos
Conexina 43 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Conexinas/metabolismo , Conexinas/farmacologia , Transdução de Sinais , Junções Comunicantes , Comunicação Celular
2.
BMC Psychol ; 12(1): 186, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581029

RESUMO

BACKGROUND: There is limited evidence on the association between housing debt and depressive symptoms in China. This study aimed to examine the impact of housing debt on depressive symptoms and explore the heterogeneous impacts arising from two sources of housing debt and two types of housing demands. METHODS: Using data from the 2016 and 2018 China Family Panel Studies (CFPS), this study included 25,232 Chinese individuals. Depressive symptoms were assessed using the eight-item Center for Epidemiological Studies Depression Scale (CES-D8). Housing debt was measured by dummy variables, indicating whether an individual had housing debt, and continuous variables, which were the logarithm of the total amount of housing debt. The two-way fixed effects model was used to examine the relationship. RESULTS: Housing debt had a significant positive impact on depressive symptoms in China. Individuals with housing debt had a 0.176-point higher depressive symptom score than those without housing debt. A 10% increase in the total amount of housing debt led to a 0.16-point increase in depressive symptoms. Non-bank housing loans significantly increased the level of depressive symptoms with a larger coefficient (coef = 0.289), while the impact of bank housing loans was small and not statistically significant. In terms of the types of housing demands, a positive impact was observed only among individuals who had only one property meeting their housing consumption demands. CONCLUSIONS: This study found a significant positive impact of housing debt on depressive symptoms, primarily driven by non-bank housing loans. Furthermore, housing debt increased the depressive symptoms among individuals with consumption demands, while those with investment demands did not show a significant impact. Government interventions should prioritize easing formal financial constraints and providing support for individuals with housing consumption demands.


Assuntos
Depressão , Habitação , Humanos , Depressão/epidemiologia , Estudos Longitudinais , China/epidemiologia
3.
ACS Macro Lett ; : 489-494, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607650

RESUMO

Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.

4.
Clin Transl Oncol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642258

RESUMO

BACKGROUND: Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS: In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS: In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS: These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.

5.
Clin Genet ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38544467

RESUMO

We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.

6.
Radiat Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376467

RESUMO

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.

7.
Front Med (Lausanne) ; 11: 1326004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379556

RESUMO

Background: Retinal detachment (RD) is a common sight-threatening condition in the emergency department. Early postural intervention based on detachment regions can improve visual prognosis. Methods: We developed a weakly supervised model with 24,208 ultra-widefield fundus images to localize and coarsely outline the anatomical RD regions. The customized preoperative postural guidance was generated for patients accordingly. The localization performance was then compared with the baseline model and an ophthalmologist according to the reference standard established by the retina experts. Results: In the 48-partition lesion detection, our proposed model reached an 86.42% (95% confidence interval (CI): 85.81-87.01%) precision and an 83.27% (95%CI: 82.62-83.90%) recall with an average precision (PA) of 0.9132. In contrast, the baseline model achieved a 92.67% (95%CI: 92.11-93.19%) precision and limited recall of 68.07% (95%CI: 67.25-68.88%). Our holistic lesion localization performance was comparable to the ophthalmologist's 89.16% (95%CI: 88.75-89.55%) precision and 83.38% (95%CI: 82.91-83.84%) recall. As to the performance of four-zone anatomical localization, compared with the ground truth, the un-weighted Cohen's κ coefficients were 0.710(95%CI: 0.659-0.761) and 0.753(95%CI: 0.702-0.804) for the weakly-supervised model and the general ophthalmologist, respectively. Conclusion: The proposed weakly-supervised deep learning model showed outstanding performance comparable to that of the general ophthalmologist in localizing and outlining the RD regions. Hopefully, it would greatly facilitate managing RD patients, especially for medical referral and patient education.

8.
Sci Rep ; 14(1): 4230, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378764

RESUMO

An unexpected surge of osteoporosis outpatients occurred after COVID-19 lockdown was lifted in China. To confirm the observation and identify possible reasons driving patients care seeking behaviors post-pandemic, we compared the outpatient volumes at the osteoporosis clinic in January through May, 2019-2022 and surveyed seven osteoporosis specialists across China to validate the phenomenon before devising an online questionnaire to collect patients' characters and physical activity levels. Univariate and binary logistic regression analyses were calculated to identify predictors of post-lockdown care-seeking. We received 480 valid responses, including 397 (82.7%) patients having visited the clinic after lockdown and 83 (17.3%) having not. Four significant predictors were identified, including being female, experiencing pain, aggravating symptoms, and heightened anxiety during lockdown (P < 0.05). Both groups experienced lower physical activity levels during lockdown, which however was not a significant predictor (P = 0.317). The surge in osteoporosis outpatient visits after COVID-19 lockdown suggests vast latent demand for osteoporosis care accumulated during the pandemic. Four significant factors predict post-lockdown outpatient care-seeking, including being female, experiencing pain and aggravating symptoms, and heightened anxiety levels. Though physical activity levels decreased during lockdown, it failed to predict care-seeking. This demonstrates resilience of osteoporosis patients to resume regular care despite disruption and stress the substantial backlog of unmet healthcare needs.


Assuntos
COVID-19 , Osteoporose , Humanos , Feminino , Masculino , Pacientes Ambulatoriais , Estudos Transversais , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , China/epidemiologia , Instituições de Assistência Ambulatorial , Osteoporose/epidemiologia , Dor
9.
Sci Rep ; 14(1): 2064, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267464

RESUMO

The research attention is increasingly directed towards the effective integration of the 17 United Nations Sustainable Development Goals (SDGs) within the limitations of the real world and amidst intersectoral conflicts. In light of the inextricable relationship between irrigation and energy, the objective of this study is to identify potential avenues for achieving the SDG6 and SDG7 goals of enhancing water use efficiency in agriculture and eradicating energy poverty, respectively. Utilizing data from 30 Chinese provinces from 2002 to 2017, this study explores the dynamic influence of energy poverty on agricultural water efficiency with a system generalized method of moments methodology. The findings suggest that energy poverty may greatly reduce agricultural water efficiency. The heterogeneity study shows that when agricultural water efficiency grows, the negative impacts of energy poverty continue to fade. Based on an assessment of various processes, results suggest that non-farm employment and cropping structure modification is a prominent conduit via which energy poverty negatively influences agricultural water efficiency.

10.
Adv Healthc Mater ; 13(6): e2303308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924332

RESUMO

Despite the intense progress of photodynamic and chemotherapy, however, they cannot prevent solid tumor invasion, metastasis, and relapse, along with inferior efficacy and severe side effects. The hypoxia-responsive nanoprodrugs integrating photodynamic functions are highly sought to address the above-mentioned problems and overcome the tumor hypoxia-reduced efficacy. Herein, a hypoxia-responsive tetrameric supramolecular polypeptide nanoprodrug (SPN-TAPP-PCB4) is constructed from the self-assembly of tetrameric porphyrin-central poly(l-lysine-azobenzene-chlorambucil) (TAPP-(PLL-Azo-CB)4) and an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6) via the synergy of hydrophobic, π-π stacking, and host-guest interactions. Upon laser irradiation, the central TAPP can convert oxygen to generate single oxygen (1 O2 ) to kill tumor cells. Furthermore, under the acidic and PDT-aggravated hypoxia tumor cell microenvironment, SPN-TAPP-PCB4 is rapidly disassembled, and then efficiently releases activated CB through the hypoxic-responsive cleavage of azobenzene linkages. Both in vitro and in vivo biological studies showcase synergistic cancer-killing actions between photodynamic therapy (PDT) and chemotherapy (CT) with negligible toxicity. Consequently, this supramolecular polypeptide nanoprodrug offers an effective strategy to design a hypoxia-responsive nanoprodrug for a potential combo PDT-CT transition.


Assuntos
Hipóxia , Oxigênio , Humanos , Compostos Azo , Peptídeos
11.
Genes Genomics ; 46(2): 203-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37523130

RESUMO

BACKGROUND: Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS: We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS: The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS: KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.


Assuntos
Linfoma Extranodal de Células T-NK , Humanos , Histona Metiltransferases , Linfoma Extranodal de Células T-NK/patologia , Carcinogênese/genética , Proteína 1 Supressora da Sinalização de Citocina
12.
Int J Radiat Biol ; 100(1): 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37540505

RESUMO

OBJECTIVE: Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI. METHODS: Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The in vivo radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats. RESULTS: Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-ß-muricholic acid (Tß-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia. CONCLUSIONS: Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.


Assuntos
Ácidos e Sais Biliares , Metabolismo dos Lipídeos , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Ácido Desoxicólico/farmacologia , Radiação Ionizante
13.
World J Pediatr ; 20(1): 82-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36645641

RESUMO

BACKGROUND: The PACS gene family has been demonstrated to be related to intracellular vesicular trafficking. The phenotypic manifestations caused by the pathogenic variants of PACS include epilepsy, intellectual disability/developmental delay, and malformations, such as facial abnormalities. METHODS: We identified seven new cases with pathogenic or likely pathogenic PACS variants using next-generation sequencing. Detailed information obtained from these patients was analyzed along with that obtained from previously reported patients. RESULTS: With the inclusion of the newly diagnosed cases in this study, 103 cases with PACS gene family-related neurological diseases were reported, of which 43 were PACS2-related cases and the remaining were PACS1-related cases. Most patients had seizures, which have been reported to be effectively controlled by several types of anti-seizure medications (ASMs). The most efficacious and frequently prescribed ASMs included sodium valproate (43.3%, 13/30), oxcarbazepine/carbamazepine (26.7%, 8/30), and levetiracetam (20%, 6/30). Almost all patients had intellectual disability/developmental delay. The most common pathogenic missense variants were PACS1 p. Arg203Trp and PACS2 p.Glu209Lys. In addition, we report a patient carrying a likely pathogenic copy number variation (CNV) (de novo heterozygous deletion of chr14:105821380-106107443, 286 kilobase, destroyed part of the furin-binding region domain and the protein structure after it) with more severe and refractory late-onset epilepsy. CONCLUSIONS: The clinical phenotypes of the different PACS heterozygous missense variants were similar. The pathogenic variant sites of PACS1 and PACS2 were quite limited but located in different regions. A CNV destroying part of the PACS2 gene might also be pathogenic. These findings may provide an important clue for further functional studies on the pathogenic mechanism of neurological disorders related to the PACS gene family. Video Abstract (MP4 65767 kb).


Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Variações do Número de Cópias de DNA , Epilepsia/tratamento farmacológico , Epilepsia/genética , Fenótipo , Genótipo , Proteínas de Transporte Vesicular/genética
14.
PeerJ ; 11: e16618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099311

RESUMO

Background: Tumor mutational burden (TMB) is a valuable prognostic biomarker. This study explored the predictive value of TMB and the potential association between TMB and immune infiltration in diffuse large B-cell lymphoma (DLBCL). Methods: We downloaded the gene expression profile, somatic mutation, and clinical data of DLBCL patients from The Cancer Genome Atlas (TCGA) database. We classified the samples into high-and low-TMB groups to identify differentially expressed genes (DEGs). Functional enrichment analyses were performed to determine the biological functions of the DEGs. We utilized the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm to estimate the abundance of 22 immune cells, and the significant difference was determined by the Wilcoxon rank-sum test between the high- and low-TMB group. Hub gene had been screened as the prognostic TMB-related immune biomarker by the combination of the Immunology Database and Analysis Portal (ImmPort) database and the univariate Cox analysis from the Gene Expression Omnibus (GEO) database including six DLBCL datasets. Various database applications such as Tumor Immune Estimation Resource (TIMER), CellMiner, konckTF, and Genotype-Tissue Expression (GTEx) verified the functions of the target gene. Wet assay confirmed the target gene expression at RNA and protein levels in DLBCL tissue and cell samples. Results: Single nucleotide polymorphism (SNP) occurred more frequently than insertion and deletion, and C > T was the most common single nucleotide variant (SNV) in DLBCL. Survival analysis showed that the high-TMB group conferred poor survival outcomes. A total of 62 DEGs were obtained, and 13 TMB-related immune genes were identified. Univariate Cox analysis results illustrated that CD1c mutation was associated with lower TMB and manifested a satisfactory clinical prognosis by analysis of large samples from the GEO database. In addition, infiltration levels of immune cells in the high-TMB group were lower. Using the TIMER database, we systematically analyzed that the expression of CD1c was positively correlated with B cells, neutrophils, and dendritic cells and negatively correlated with CD8+ T cells, CD4+ T cells, and macrophages. Drug sensitivity showed a significant positive correlation between CD1c expression level and clinical drug sensitivity from the CellMiner database. CREB1, AHR, and TOX were used to comprehensively explore the regulation of CD1c-related transcription factors and signaling pathways by the KnockTF database. We searched the GETx database to compare the mRNA expression levels of CD1c between DLBCL and normal tissues, and the results suggested a significant difference between them. Moreover, wet experiments were conducted to verify the high expression of CD1c in DLBCL at the RNA and protein levels. Conclusions: Higher TMB correlated with poor survival outcomes and inhibited the immune infiltrates in DLBCL. Our results suggest that CD1c is a TMB-related prognostic biomarker.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Algoritmos , Linfócitos B , Biomarcadores , Linfoma Difuso de Grandes Células B/genética , RNA
15.
Toxicol Appl Pharmacol ; 480: 116734, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924851

RESUMO

Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.


Assuntos
NADP Trans-Hidrogenases , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , NADP Trans-Hidrogenases/metabolismo , Estresse Oxidativo/fisiologia , Proteômica , Proteases Específicas de Ubiquitina/metabolismo
16.
Cancer Immunol Immunother ; 72(12): 4249-4259, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943341

RESUMO

Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.


Assuntos
Neoplasias Esofágicas , Vesículas Extracelulares , Humanos , Linfócitos T Auxiliares-Indutores , Células T Auxiliares Foliculares , Interleucina-10 , Antígeno CTLA-4 , Antígeno B7-H1 , Linfócitos T Reguladores , Terapia de Imunossupressão
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1556-1559, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994142

RESUMO

OBJECTIVE: To explore the genetic basis for a child featuring facial dysmorphism, single palmar crease, motor and language delay, and hypoplasia of corpus callosum. METHODS: A child who had visited the Affiliated Hospital of Binzhou Medical College on March 16, 2021 was selected as the study subject. Peripheral blood samples of the child and his parents were collected, and the genomic DNA was extracted for whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: WES revealed that the child has harbored a heterozygous c.607delT (p.S203Pfs*31) variant in exon 9 of the TCF4 gene, for which both of his parents were of the wild-type. Based on guidelines from the American College of Medical Genetics and Genomics, the variant was classified as pathogenic (PVS1+PM2_Supporting+PM6). CONCLUSION: The heterozygous c.607delT (p.S203Pfs*31) variant of the TCF4 gene probably underlay the Pitt-Hopkins syndrome in this child. Genetic testing has enabled the definite diagnosis.


Assuntos
Biologia Computacional , Testes Genéticos , Humanos , Criança , Éxons , Genômica , Mutação
18.
Cell Mol Life Sci ; 80(11): 345, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921875

RESUMO

AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Transmissão Sináptica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo
19.
Dev Med Child Neurol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37960945

RESUMO

AIM: To investigate the seizure course of PCDH19 clustering epilepsy (PCDH19-CE) in a cohort of female children in China. METHOD: This ambidirectional cohort study examined 113 female patients with PCDH19-CE through multicentre collaboration. Prognostic factors for seizure freedom were evaluated by multivariate Cox regression analysis. RESULTS: The median seizure course period from seizure onset was 6 years 6 months. Of 113 patients, 78% and 56% experienced seizure freedom for at least 1 year and at least 2 years respectively. In patients younger than 5 years (n = 30), 5 to 10 years (n = 52), and older than 10 years (n = 31), 57%, 81%, and 94% experienced at least 1 year of seizure freedom, and 32%, 52%, and 84% experienced at least 2 years of seizure freedom, respectively. However, 58% (65 out of 113) relapsed at least once after more than 1 year of seizure freedom without trigger exposure (40%) or because of common triggers, including fever (43%) and antiseizure medication (ASM) reduction (29%). There was an 84% risk of seizure relapse after ASM reduction attempts. The likelihood of seizure freedom decreased with early age at seizure onset and developmental delay. INTERPRETATION: Patients with PCDH19-CE exhibit increasing seizure freedom with age, but there is a risk of relapse. ASM reduction in children younger than 10 years old requires caution. Patients with early seizure onset and developmental delay have a reduced chance of seizure freedom.

20.
J Radiat Res ; 64(6): 870-879, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788485

RESUMO

Radiotherapy (RT) has been the standard of care for treating a multitude of cancer types. Radiation-induced gastric injury (RIGI) is a common complication of RT for thoracic and abdominal tumors. It manifests acutely as radiation gastritis or gastric ulcers, and chronically as chronic atrophic gastritis or intestinal metaplasia. In recent years, studies have shown that intracellular signals such as oxidative stress response, p38/MAPK pathway and transforming growth factor-ß signaling pathway are involved in the progression of RIGI. This review also summarized the risk factors, diagnosis and treatment of this disease. However, the root of therapeutic challenges lies in the incomplete understanding of the mechanisms. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of RIGI.


Assuntos
Gastrite Atrófica , Neoplasias Gástricas , Úlcera Gástrica , Humanos , Gastrite Atrófica/complicações , Gastrite Atrófica/patologia , Fatores de Risco , Estresse Oxidativo , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...